Approaching Language Transfer through Text Classification

Explorations in the Detection-based Approach

Edited by Dr. Scott Jarvis, Scott A. Crossley

Publication date:

14 March 2012

Publisher

Multilingual Matters

Dimensions:

234x156mm
6x9"

ISBN-13: 9781847696984

Recent work has pointed to the need for a detection-based approach to transfer capable of discovering elusive crosslinguistic effects through the use of human judges and computer classifiers that can learn to predict learners’ language backgrounds based on their patterns of language use. This book addresses that need. It details the nature of the detection-based approach, discusses how this approach fits into the overall scope of transfer research, and discusses the few previous studies that have laid the groundwork for this approach. The core of the book consists of five empirical studies that use computer classifiers to detect the native-language affiliations of texts written by foreign language learners of English. The results highlight combinations of language features that are the most reliable predictors of learners’ language backgrounds.

In this bold and pioneering interdisciplinary study, experts on SLA research, computational analysis and statistics collaborate to try to identify the L1 background of non-native writers. The result is a most impressive work which will take the field of crosslinguistic studies a long way forward. A MUST for all SLA researchers!